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Abstract. Using the eikonal approximation of Yennie we give a general expression for the 
cross section for fast-electron scattering from oriented nuclei and a corresponding simpler 
expression for nuclei fully oriented along the direction of momentum transfer. The branching 
ratios of quadrupole transition probabilities to different rotational levels of aligned nuclei 
are also obtained. Using Petkov’s analytic method for the Fermi charge density and taking 
different forms of nuclear charge distributions we calculate in the eikonal approximation 
the cross section and the effect of nuclear alignment on it for electron scattering from 
oriented 1 6 5 H ~  nuclei. We compare our results with those obtained by Wright employing 
phase-shifted distorted waves and the experimental findings of Safrata. The Born approxi- 
mation limit of the above results is also obtained. A correction term is added to Petkov’s 
result for the quadrupole transition probability. In the case when one assumes a 6 function 
quadrupole distribution the effect of nuclear alignment, determined in the eikonal approxima- 
tion, is compared with that obtained by Greenstein in the Schiff-Tiemann approximation. 
We further investigate the variation of the above mentioned effect with the change in energy 
and sign of the charge of the projectile, the degree and direction of nuclear alignment 

1. Introduction 

In this paper we give a general formulation for the study of scattering of high energy 
electrons from an oriented deformed nucleus in the eikonal approximation due to 
Yennie (1965, to be referred to as paper I). This approximation takes into account the 
Coulomb distortion of the electron wave in the field of the medium and heavy nuclei. 
The same problem (for l6’Ho) was treated by Wright (1969) who used the method of 
phase-shifted distorted waves (to be referred to as Wright’s method) obtained by solving 
the Dirac equation with the spherical part of the nuclear charge distribution only. In 
this method, which is very tedious and involves great difficulties when applied to large- 
angle scattering, the explicit relation between the charge distribution and the structure 
of the scattering cross section is lost. However, Yennie’s method leads to a form which 
exhibits this explicit relation clearly. This method consists of treating the electron- 
nucleus scattering problem in perturbation theory taking the distorted eikonal wave- 
functions as zero-order states. For large-angle scattering which is particularly required in 
determining the nuclear structure Yennie’s method gives a result which is in good agree- 
ment with that obtained by Wright’s method. Furthermore it saves much computing 
time. In the work of Wallace (1973) we find another approach to the eikonal approxima- 
tion for the potential scattering problem which is based on T matrix formalism. He 
made some improvements on Glauber’s (1959) work regarding the eikonal approxima- 
tion (which is limited in its validity to small scattering angles), for extending the domain 
of validity of the eikonal approximation to large scattering angles. For a potential 
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which produces oscillatory or diffraction-like differential scattering, Wallace's theory is 
not very satisfactory in the domain of large-angle scattering. His theory (formulated for a 
spherically symmetric potential) is thus not suitable for dealing with large-angle scattering 
of electrons from non-spherical nuclei. 

Using the Bohr-Mottelson model to describe the low-lying rotational levels of a 
nucleus we obtain, in the eikonal approximation, an expression for the cross section 
for the scattering of electrons from aligned nuclei in a form which involves Clebsch- 
Gordan coefficients, Racah coefficients, and the statistical tensor of Fano (describing 
the degree oforientation of a nucleus) in the same way as found in the corresponding Born 
approximation result previously derived by Inopin and Tishchenko (1960). We also 
find that this cross section assumes a simpler form which involves Clebsch-Gordan 
coefficients and fr's but no Racah coefficients when we take the nucleus to be fully 
oriented along the direction of momentum transfer. We note that at the present state of 
the experimental situation it is not possible to separate the inelastic scattering associated 
with the transition (which is related to the quadrupole charge distribution) to the low- 
lying rotational levels of a heavy nucleus (such as 1 6 5 H ~ ) .  We take into account the 
contribution ofthese processes to the scattering cross section. In some cases (to be stated 
later) the contribution of the quadrupole charge distribution to the cross section can be 
separated out by performing experiments with nuclei aligned in some particular ways. 

Inopin and Tishchenko (1960) obtained the branching ratio of the inelastic cross 
sections involving different excited levels of the same rotational band of a non-aligned 
nucleus in the Born approximation. The same result for the branching ratio can be 
obtained in the eikonal approximation. Here we also calculate the branching ratios for 
the partially oriented nuclei and for nuclei fully oriented along the direction of the 
momentum transfer. The branching ratios may be measured experimentally in the case 
of light nuclei for which the separation between excited levels is about 1 MeV. 

In order to have a good fit with the experimental data different forms for the nuclear 
charge distribution can be tried theoretically. For "Sr Onley et a1 (1964) and Petkov 
et a1 (1967h to be referred to as 11) used two different forms (to be referred to as form 1 
and form 2 respectively, which are given in equations (41) and (42)) for the quadrupole 
transition charge density p2(r ) ,  based on different theoretical reasonings. The first 
form for p2(r) was also assumed by Wright (1969) for the 1 6 5 H ~  nucleus. 

In this paper we apply the analytic method of Petkov et a1 (1967a, to be referred to as 
III), which enables us to avoid numerical integration, to study electron scattering from a 
nucleus whose spherical part of the charge distribution is Fermi-like and whose quadru- 
pole part of the charge distribution (p2(r)) is given by any of the two forms 1 and 2.  A 
correction term is added to the result of Petkov et al(1967b) for the inelastic quadrupole 
transition amplitude where the form 2 for p2(r) is assumed. This enables us to obtain 
the correct Born approximation result. It is possible to obtain a closed analytic ex- 
pression for the quadrupole transition amplitude in the Born approximation limit if one 
uses form 1 (assumed by Wright 1969) instead of form 2 (given by Petkov et al 1967b) for 
p2(r). We find that the algebraic expression for 'c' (related to the nuclear charge distribu- 
tion) derived here differs from that used in 111. 

Using the method of eikonal approximation with both forms 1 and 2 for the charge 
distribution we give numerical results for the scattering cross section for electrons 
colliding with a randomly-oriented 1 6 5 H ~  nucleus (da/dR)'"" and also results for A 
(a measure of the alignment effect to be defined later) and compare them with those 
evaluated by Wright (1969) and the experimental results of Safrata er al (1967). For a 
6 function quadrupole distribution for 1 6 5 H ~  we compare the result (obtained in eikonal 
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approximation) for A with that evaluated by Greenstein (1966) in the Schiff-Tiemann 
approximation. Variations of A with changes in the degree of nuclear alignment, the 
projectile energy and the sign of the charge of the incident particle are also investigated 
in this paper. We further study how A changes with the scattering angle for different 
directions of orientations. In this connection we may mention that the orientation effects 
for light nuclei were investigated by Langworthy and Oberall (1970) in the Born ap- 
proximation. 

2. Theory 

In the eikonal approximation the distorted electron wave is taken in the form given 
below 

$ k ( r )  = d)k(r)9(k) exP(is(r)) ( 1 )  
where d)k(r) and S(r) are the amplitude and the phase of the electron wave respectively, 
9 ( k )  is the electron spinor. 

The scattering amplitude for an electron-nucleus collision as given in I is of the form 

where the potential V(r )  due to the nuclear charge density p(r)  is 

V(r)  = e2 p(r’) d3r‘/ Ir’--rl. (3) s 
The multipole expansion of p(r)  is 

L 

where Ai s  the unit vector along the direction of the nuclear symmetry axis. 

as follows 

where 

The potential V’(r)  due to p&r)  which is the spherical part of p(r) is expanded (as in I) 

( 5 )  

(6) 
In this paper we neglect the electron mass and the excitation energy. Then the electron 
energy can be written as 

(7) 

vyr) = ~‘(0) + $ ~ a k r 3 ~ 2  + . . . 
k’ = k - V’(0). 

k = lkll = lk21. 
Using the Bohr-Mottelson model to describe the rotational states of the nucleus 

one obtains the following expression (uberall 1971) for the charge matrix element be- 
tween initial and final states characterized by total angular momenta J and J‘ and 
projections M and M’ 

(JfMflP(r)lJiMi) 

where 
3, = (2Ji+ l ) l ’ 2 .  (9) 
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We now choose the z axis to be along the direction of the momentum transfer q = k l  - k ,  
and the x axis along S = k; + k ;  (from which the azimuthal angle 4 is to be measured) 
and make the required transformation for YLM(P): 

and 
p = 4 . P .  

if? . P = (1 - p‘)”’ cos 4 
we have 

and 

Y L M ( p ,  4) = (- 1)M(t/(4n)”Z)[(L-IMI)!/(L+ lMl)!]l/’(l -,u’)~/’ 

x (dMPL(p)/(dp)M) eiM6. (14) 
Following the procedure of I we obtain the scattering amplitude in the following form : 

The quantities (iq’ . r +  iO(r)), C(r) and F(r) occurring in (17) are defined by the following 
relations : 

q’ . r + @(r) = q’ . r - *a(k’r)’q’ . r + Aaq’ . r[3( S . r)’ + (4’ . r)’] 

- +b[4(rk’)’ - (r . q’)’ - (r . X)’] 

+ $.c[4(rk’)’ - (r .q‘)’ - (r . S)’]’ + *c(r . q’)’(r . X)’ 

q”C’(r) = IV(q’ . r +O(r))l’ 

~(kz)+F(rP(k 1) 

= 9(kz)+{ 1 + 3bq‘. r + a[(r .q’)’ +(r  . S)’ - 2(rk‘)’] 

- $cq’ . r[4(k’r)’ - (4’ . r)’ - 3( S . r)’] 

- [ & + 2 ~ q ‘ . r ] R . v t ~ . r k ’ } 9 ( k ~ )  
now 

a.L,W,) = Wl), a L,9(k,) = W,). (21) 
Let us study the nature of the integral in (17) for different values of M “ .  The relations 
(18) to (21) and (12) to (14) enable us to show that the integrand without the factor 
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YLMrs (p,  4), involves only even powers of cos 4 and consequently the integral vanishes 
when M” = 1 ,3 ,5 .  . . (odd numbers). If the p integration in (17) is done by the method of 
integration by parts, terms of decreasing magnitude occur; the first term vanishes if 
M” # 0 because YLM,! (p,  4 )  as given by (14) becomes zero in the limit p = k 1. The 
next term, after the 4 integration is done, is of the order of (Z/137) x l/(q’R)3 if the main 
term of the result of integration for M“ = 0 is O( l/q’R). Here Z is the atomic number 
and R is the average nuclear radius. So if q‘R >> 1, we can neglect the contribution of 
T L M ”  for M” # 0 to the scattering amplitude as a good approximation. Petkov et a /  
(1967b) also made this approximation. The above mentioned considerations enable 
us to rewrite equation (15) in the following form: 

v 

F(r, p = E)  exp(iqr’r + id(r, p = E)) 

C 2 ( r , p  = c)(iq’r)”+’D’+’(r,p = E)  

1 
TL(r, p = E)  = --( - l )LiLC(  - 1 ) ” ~  

2 

Following the procedure of I and I11 we write : 

@(r, p = E) = - ca(&’k’2 -&q’3)r3 - )bK”r2 + &K’4r4 

F(r, p = E) = 1 + 3~bq‘r + a(q’2 - 2k”)r2 - $ r ~ q ’ K ’ ~ r ~  

C(r, p = E) = 1 -a($ k” -aq’2)r2 - ~ b K ’ ~ r / q ’ + ~ c K ’ ~ r ~ / ( 2 q ’ )  

D(r, ,U = E) = 1 -a($k‘2 - ~ “ ) r ’  + cb($q” - 2k’2)r/q’ - rc[k” -$q”]K”r3/q’ 
K12 = 4kI2-q 12 . 

(25)  

(26) 

(27) 

(28) 

(29) 

The term ‘a’ occurring in (18) to (20) and (25) to  (28) is already defined by equation (5). 
The terms ‘b’ and ‘c’ occurring in the above mentioned equations are defined by the 
following relations : 

b = (nZe2/kf2) Joe po(r) dr 

c = - (nZe2/8kf4) Joe (dp,/dr) (i) dr. 

In the Born approximation limit (ie in the absence of the distortion of the electron wave), 
obtained by putting Ze2  = 0 in the expression for &(r) and S(r)  occurring in equation 
(l), we have 

(32) F(r, c) = C(r, E) = D(r, E) = 1 +@(r, c)/q’r = 1 
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and 

Considering the effect of all the multipole moments of the charge distribution we obtain 
from (22) in the usual way the following differential scattering cross section for electrons 
scattered from aligned nuclei : 

x (JiJi, L'OIJJ,) C f 1 ( L  0, L' 011 O)W(J,J,LL'; 1J,)P,(4 . Iq 

f r  = 1 P(M,)(-l)J1-Mx(Ji  M , , J i - M , l I O ) .  

(34) 
I 

where 

(35) 

In equation (35) P(M, )  describes the initial occupation probability of various magnetic 
substates in a space-fixed coordinate system (defined by the direction fi of the aligning 
magnetic field). We may note that the structure of the expression (34), obtained here 
in the eikonal approximation, is identical with that evaluated in the Born approximation 
by Inopin and Tishchenko (1960). 

When the nucleus is completely oriented along the direction of the momentum 
transfer, ie NIlq and P ( M , )  = dM,J ,  the expression (34) reduces to 

M, 

We note that equation (36) unlike equation (34) does not involve the Racah coefficient 
W. 

Now we confine ourselves to the contributions of the monopole ( L  = 0) and quadru- 
pole ( L  = 2) charge distributions to (do/dR)alig" and neglect the contributions of higher 
multipoles ( L  > 2) and write 

e4 cos2Q/2 - - (%) 4k2 sin4Q/2 (IudoJ2dJ,Jf + 2P2(4 . f i  Re(,&~A0)j,2(JiJi, J i  - Ji12 0) 

xf*dJ,Jf+j:1,d212(JiJ,, J,-J,/2 0)2[1+5(- 1)Jl-JfP2(4, 4 3 ;  

x W(JiJi2 2 : 4 J,)f4]}. 

x (2 0,2 012 O)W(J,J, 2 2 ; 2 Jf)f2 + 5(  - l)J1 -jrP4(4, fi?j?(2 0,2 014 0) 

(37) 

2.1. Branching ratio: 

For a nucleus fully oriented along the direction of the momentum transfer q we obtain 
from (36) and (37) the following expression for the branching ratio for excitations to two 
different rotational levels of the ground state rotational band, characterized by J ,  and 
J,. : 
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The corresponding branching ratio for randomly oriented nuclei, R'"" (for which 
fr = 5;'6,,) evaluated in the eikonal approximation is found to be identical to that 
derived by Inopin and Tishchenko (1960) in the Born approximation. 

When Ji = i, J, = $and J; = ywege t  R'Ile = 18.15, R'"" = 3.96and RfiL4 = 2.694, 
where RRLq implies that the nucleus is taken to be fully oriented normal to the scattering 
plane. For partially oriented nuclei we get the following branching ratio 

(39) 
f2(2 0,2 012 0)W(JiJi2 2;  2J,)P2(cos p)+f4(2 0,2 014 0)W(JiJi2 2; 4J,)P4 (cos p) 
f2(2 0,2 012 0)W(JiJi2 2;  2&.)P2(cos /?)+f4(2 0,2 014 0)W(JiJi2 2;  4J,,)P4(cos 8)' X 

Let 

P,(cos p 2 )  = 0 and P,(cos 84) = 0 . .  . . (40) 

When p( = d: (4,R)) is equal to either /I2 or p4, the right-hand side of the relation (39) 
becomes independent of the degree of orientation characterized by f, and f4. In the 
case p = p2(p4) it is found from (39) and (37) that measurement of do~~?',/da~!! Jr - 1 
enables us to determine the Fano tensors f4(f2). 

Let us evaluate do and d2 defined by the integral in equation (23) for the following 
two forms for the charge distribution : 

Form 1 

dF(r) Form 2 :  pg(r) = po(r )  = qF(r); p:(r) = aPR- 
dr ' 

The Fermi distribution F(r) is given by 

F(r) = 1/{ 1 + exp[(r - R)/B]}  (43) 

where R is the half-density radius and B is the fall-off parameter. Form 1 and form 2 
for the charge distribution were used by Wright (1969) and Petkov et al (1967a, b) 
respectively. In I11 the integral for do was expressed as the sum of an integral along the 
imaginary axis, an integral along contour 0'' of infinite radius and the sum of the residues 
at the poles r!') = R+ir(2s+ 1)7tB(r = f 1, s = 0, 1,2,. . .) of the Fermi distribution F(r) 
in the complex plane. The integral along the imaginary axis was found to be negligible 
if R >> B.  Petkov et a1 (1967a) further observed that the integral along C") vanishes if the 
following condition is fulfilled : 

Re{i@(r e'#, p = c) < qr[c  sin 4 +cos $/(&)I - 4 2  < $ < n/2, 

This condition is satisfied for the asymptotic phase 

r - z .  (44) 

@ - CInr .  (45) 
Following the above mentioned analytic method of I11 and using form 1 for the charge 
distribution we obtain 
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3C(r:), E) 

D(r$), E) 

Similarly using form 2 for the charge distribution we obtain 

R 3R C(r:), E) 

rs r:) D(rF), c) 

u p  
A ; ( q )  = -3 c c Y(r:), E) icq'RC(r$), E ) + - - -  ___ 

t = i l  s = 0 . 1 , 2 ,  ... 

3R 3icC(r$), c)R 
q'2(r:))3D2(rF), c)- q'(ry))2D2(r:), c) 

+ 
where, 

-M0(q) is the same for both forms. It may be stated that equation (48) for A $ ( q )  is obtained 
by adding a correction term rr)dL/dr to [l+icq'rf)C(rr),~)] L occurring in Petkov 
et al(1967b) where 

L = l/D(rr), c) + 3ic/(q'rc)D2(r$), e)) - 3/((q ' rs (d ) 2 D 3 (r, (0 )). 

The above correction term leads to quantities which are of the order l/(qR)j and l/(qR)4 
if the main term is of the order of l/(qR). Now in the eikonal approximation which 
involves an asymptotic series in l/(qR) Yennie (1965) retained the first term which is 
O(l/qR) and neglected the next term of the series which is O(Ze2/(qR)3).  For light nuclei 
we may not neglect a quantity of the order of l/(qR)3 (in contrast with the quantity 
0(Ze2/(qR)')) which comes from the term rf) dL/dr neglected in 11. Further, the re- 
tention of the above correction term yields the correct scattering amplitude in the Born 
approximation limit given by (32). We have 

4n2aWB 
A W ( B o r n )  - { [4R2 - nB cotanh(nBq) - 2q(nB cotanh (nBq))2 + ( x B ) ~ ~ ]  

59 
2 

x sin(qR)+ R( 1 + 2nBq cotanh (nBq)) cos(qR)) cosech(nBq) 

and 

A P ( B o r n )  = 4n2aPBR (qR cosech(nBq) sin(qR) +(2 + nBq cotanh(nBq)) 
59 

x cosech(7rBq) cos(qR) - 

2 

q" cosech(nBq") cos(q"R) dq" 

+- sech2(R/2B)). 
4 B d 2  

The expression for AFr" was already given in 111. Setting the fall-off parameter B = 0 
in (50) and (51) we obtain the corresponding equation for given by Greenstein 
(1966) for a 6 function quadrupole distribution. 

Using the following relation for the quadrupole moment Q : 



2312 S Sarkar and S Khatun 

and writing d = B/R we give below the formulae for ctW and a' defined by (41) and (42) 

(53) 
e - 2 / d  e - 3 / d  - 1 

i20d5 ( e-'Id-- 25 +7)] 
, -2/d e - 3 / d  - 1  

P a =- -  

From (3 1) we obtain the following expression for c : 

c 2: &(Ze2/(k'R)4)( 1 - $-c2d2) (55) 

which differs from that for 'c' given in 111. This, however, unlike 'c' of Petkov er a1 
(1967a) is found to agree (which it should) with that given by Yennie (1965) in the limit of 
zero value of the fall-off parameter B. The expressions for a, b and 7 defined by (5), (30) 
and (41) respectively are the same as given in 111. 

3. Calculation 

As a special application of the relation (37) we investigate the scattering of high energy 
electrons from aligned l6'Ho nuclei ( Z  = 67, spin = 8). Summing the expression given 
by (37) over all the final states of the rotational band we get 

For a randomly-oriented nucleus we have 

We now define a quantity A giving the alignment effect as 

A = (dgalign/dgran) - 1. (58) 
From (37), (56) and (57) it is evident that the quadrupole transition probability is pro- 
portional to the following quantities : 

(for N .  4 = 1/J3)- (59) 

and 

Here we can make an estimate of the amount by which the results for (do/dOp" and A 
(both calculated by Wright's method) change if one uses form 2 instead of form 1 for 
p2(r). This can be done from the knowledge of the corresponding results obtained by the 
method of eikonal approximation and from the fact that the two methods yield results in 
close agreement with each other. Thus we can write 

(do): (do):h (do):' - -  (do )E i  
dQ = d n  + d R  a? 1 

- 
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where the superscripts 'Ph' and 'Ei' refer to Wright's (1969) method and the eikonal 
method and the subscripts 1 and 2 refer to forms 1 and 2 given by (41) and (42) respectively. 
The relation (61) holds for both aligned and non-aligned nuclei. Using the relation (61) 
and (58) we can obtain an appropriate approximate relation for the alignment effect A. 

Petkov et al(1967a) observed that only the s = 0 term of the series in (46), (47) and 
(48) gives the main contribution, each succeeding term of the series being smaller than 
the preceding term by a factor of the order of exp(2xqB). Now some precaution is 
needed in evaluating the above mentioned series for the following reason. It is found 
that this series for the scattering amplitude first converges and then it begins to diverge 
when s (which can take the values 0, 1,2 ,3 , .  . .) exceeds a certain large value (depending 
upon 4) .  This is expected because the function CD (rf), e) (unlike the asymptotic form of the 
function given by (45)) occurring in (49) may not satisfy the relation (44) for very large 
values of s. This can be explained by the fact that CD(rf), e) occurring in (25) and (49) was 
obtained in I by an analytic expansion about r = 0 to match the assumed expansion 
of the potential given by ( 5 )  and may not be used when s is very large and the correspond- 
ing pole $) is located far from the origin. In this connection we may point out that the 
calculation performed for high energy ( k  = 300 MeV) electron scattering from the 
Bi ( Z  = 83) nucleus (investigated in 111) shows that (do/dR) diverges ifs > 5 (8) when the 
scattering angle is 30" (40"). It is also found in the above case that the contribution of the 
term corresponding to s > 1 (s should not be, however, very large) of the series to the 
value of do/dC? is very small. In our calculation for high energy ( k  = 200 MeV) electron 
scattering from 16'Ho(Z = 67) we have considered the terms corresponding to s = 0 

Figure 1. Curve l(2) represents (do/dnP" for electron scattering from lf i5H0 using form 
l(2) for the charge distribution. Curve 4(5) represents lOOW, (related to quadrupole charge) 
for form l(2). The eikonal approximation is used for all the curves except curve 3 which 
represents Wright's result for form 2. Experimental points are from Safrata et al (1967). 
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and s = 1 of the series in (46), (47) and (48). It may be noted that the scattering of 250 MeV 
electrons from gold (2 = 83), treated by Yennie by the eikonal method (which is reliable 
for qR >> 1) gives a good description for scattering angle 8 > 40'. In view of that, 
the same method is expected also to give reliable result for 8 > 40" when applied to 
200 MeV electron scattering from 165H~ (Z = 67). 

We take the following values for the quadrupole moment Q, P(M,) ,  and the Fermi 
charge density parameters used by Wright (1969) : 

Q = 8 b ,  R = 6.12fm, B = 0.65 fm 

P(3) = 0.561, P($) = 0,254, P(2)  = 0.1 10, P ( t )  = 0.046 

P( -f) = 0.018, P( -$) = 0.007, P( -3) = 0.003, P( - 7'2) = 0.001 

The numerical calculations are displayed in figures 1-4. 
In figure 1, which also shows the experimental result of Safrata et al(1967), curve l(2) 

represents (do/dQY against 8 calculated in the eikonal approximation assuming form 
l(2) for the charge distribution. Curve 3 is Wright's (1969) result. Curve 4(5), cor- 
responding to form 1(2), represents 100 x W, , (defined by (59)) against 8 for fully oriented 
nuclei. 

v 
Figure 2. Curve l(2) represents A = (d6.1ign/duran) - 1 against 6 (calculated in the eikonal 
approximation) for electron scattering from r 6 s ~ ~  using form 1(2). Curve 3 represents 
Wright's result for form 1. Curve 4(5) represents A evaluated in the eikonal (Schiff-Tiemann) 
approximation using a 6 function quadrupole distribution. Experimental points are from 
Safrata et al(l967). 



Electron scattering from oriented nuclei in eikonal approximation 23 15 

8 (dcgl 

Figure 3. Curves 1 , 2  and 3 represent A = (dc9'ipn/dur'n)- 1 against 0 for 300 MeV electrons, 
300 MeV positron and 200 MeV electron scattering from '"Ho fully-oriented normal to 
the scattering plane. Curve 4 gives A for 300MeV electron scattering from partially- 
oriented '65Ho. 
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Figure 4. Plot of (do'"a"/dura")-l against 0 for 200MeV electron scattering by 1 6 5 H ~  
(fully aligned) which may be oriented in different directions. Orientation levels are given 
in the text. 
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In figure 2 are shown experimental and theoretical values for A against 8. Curve 
l(2) is obtained from the eikonal approximation using form l(2). A, calculated, by 
Wright's method using form 1, is represented by curve 3. Curves 4 and 5 represent the 
calculations carried out in the eikonal approximation and the Schiff-Tiemann ap- 
proximation (Greenstein 1966) respectively, using Q = 8.56 b, R = 6.58 fm, the step- 
function charge distribution for the monopole part and a 6 function quadrupole distribu- 
tion. 

In figure 3 curves 1, 2 and 3 represent A plotted against 8 for 300MeV electron, 
300 MeV positron and 200 MeV electron scattering respectively when the nucleus is 
taken to be fully oriented. Curve 4 refers to 300 MeV electron scattering from a partially 
oriented nucleus using the values of P ( M , )  given before. In figure 2 and figure 3 the 
nuclear orientation A is always taken to be normal to the scattering plane. 

In figure 4 we have shown the variation of A with 8 for the case of fully-oriented nuclei 
and 200 MeV electrons by curves 1,2,3 and 4 corresponding to the orientations (&Ilkl), 
(?Ilkl x k2),(All(kl  x k,) x k,)and(&Ilq)respectively. Curve 5 represents the same when 
N .  4 = cos p2 = 1J3 (see (40)). Form 2 for the nuclear charge distribution is used to 
calculate A in both figure 3 and figure 4. 

4. Discussion 

It is found from figure 1 that the use of the eikonal approximation to evaluate (da/da)'an 
yields a result which is in close agreement with that obtained by Wright (1969) and also 
with the experimental data. The quantity W, (defined by (59)), represented by curves 
4 and 5 in figure 1, may provide us with information about the inelastic scattering (due to a 
quadrupole transition charge density) which cannot be separated experimentally from 
the elastic scattering for 165H~. Figure 2 shows that Wright's (1969) result for A (calcu- 
lated for form 1) is too large compared to the experimental result of Safrata et al(l967). 
The eikonal approximation (which in the present case is reliable for 8 > 40") with either 
form 1 or form 2 leads to a result for A which is lower than that given by Wright (1969) 
and is in better accord with the experimental finding. This observation, for the particular 
case considered in this paper, need not be generalized. Now Wright (1969) pointed out 
that there was the possibility that the experimental alignment parameters were not 
correctly known. In such a case it is not possible to compare the results obtained by the 
two methods with the experimental data. In the eikonal approximation the assumption 
of form 2 instead of form 1 leads to a little better fit with the experimental data for A. The 
approximate relation (61) for (da/dR), a similar one for A (obtained from (61) and (58)) 
and the relative shifts between the curves in figure 1 and figure 2 show that for large-angle 
scattering we may expect somewhat better agreement with the experimental value for 
(do/dR) and A if we employ form 2 instead of form 1 in the phase-shift calculation of 
Wright (1969). 

Curves 4 and 5 in figure 2 show that when we assume a 6 function quadrupole dis- 
tribution, the quantity A, evaluated in the eikonal approximation, is in better agreement 
with the experimental value than that calculated in the Schiff-Tiemann approximation. 

It is evident from curves 1 and 3 of figure 3 that the gap between the successive maxima 
of A is narrowed with the increase in energy. A study of curves 1 and 2 shows that the 
above mentioned gap is smaller for electrons than that for positrons. Curves 1 and 4 
show that there is little change in the position of the maxima and the minima of A with 
different degrees of alignment. Wright (1969) found that the alignment effect defined 
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by A was larger for the case Ailkl x ( k ,  x k, )  than for the case All(kl x k2) .  A study of 
figure 4 reveals that a still larger effect of alignment is obtained for the case Aljq (repre- 
sented by curve 4). It may be seen that A is very small for A. 4 = 1/43.  Curves 4 and 2 
also show that A (for A11q) is approximately two times A (for &ll(kl x k 2 ) )  in magnitude 
and opposite in sign. The above mentioned properties of A can be explained from the 
relations ( 5 8 ) ,  (57), (56) and (37) and from the fact that the term involvingf, is small. The 
same relations also show that A for A.4 = 1/J3 vanishes when the nuclear spin 
I d $. If we want to study A against 141 in the case AlIq, two different experimental 
methods can be adopted to alter 141 in a continuous manner, keeping the direction of 
always parallel to q. The first method consists of varying the scattering angle and 6, ie 
the direction of the aligning magnetic field, simultaneously in a suitable manner. In the 
second method we have to alter the energy of the electron beam, keeping the scattering 
angle 0 fixed, so that the direction of the aligning magnetic field need not be changed. 
The second method is more suitable for experimental purposes. In conclusion we may 
say that more accurate experiments for different alignments and projectile energies in 
future will help us to know more about the structure of the deformed nucleus. 
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